skip to main content


Search for: All records

Creators/Authors contains: "Dykman, Lauren N."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Habitat isolation and disturbance are important regulators of biodiversity, yet it remains unclear how these environmental features drive differences in parasite diversity between ecosystems. We test whether the biological communities in an isolated, frequently disturbed marine ecosystem (deep-sea hydrothermal vents) have reduced parasite richness and relatively fewer parasite species with indirect life cycles (ILCs) compared to ecosystems that are less isolated and less disturbed. We surveyed the parasite fauna of the biological community at the 9°50′N hydrothermal vent field on the East Pacific Rise and compared it to similar datasets from a well-connected and moderately disturbed ecosystem (kelp forest) and an isolated and undisturbed ecosystem (atoll sandflat). Parasite richness within host species did not differ significantly between ecosystems, yet total parasite richness in the vent community was much lower due to the low number of predatory fish species. Contrary to expectation, the proportion of ILC parasite species was not lower at vents due to a high richness of trematodes, while other ILC parasite taxa were scarce (nematodes) or absent (cestodes). These results demonstrate the success of diverse parasite taxa in an extreme environment and reinforce the importance of host diversity and food web complexity in governing parasite diversity. 
    more » « less
    Free, publicly-accessible full text available June 14, 2024
  2. Abstract

    Investigation of communities in extreme environments with unique conditions has the potential to broaden or challenge existing theory as to how biological communities assemble and change through succession. Deep‐sea hydrothermal vent ecosystems have strong, parallel gradients of nutrients and environmental stress, and present unusual conditions in early succession, in that both nutrient availability and stressors are high. We analyzed the succession of the invertebrate community at 9°50′ N on the East Pacific Rise for 11 yr following an eruption in 2006 in order to test successional theories developed in other ecosystems. We focused on functional traits including body size, external protection, provision of habitat (foundation species), and trophic mode to understand how the unique nutritional and stress conditions influence community composition. In contrast to established theory, large, fast‐growing, structure‐forming organisms colonized rapidly at vents, while small, asexually reproducing organisms were not abundant until later in succession. Species in early succession had high external protection, as expected in the harsh thermal and chemical conditions after the eruption. Changes in traits related to feeding ecology and dispersal potential over succession agreed with expectations from other ecosystems. We also tracked functional diversity metrics over time to see how they compared to species diversity. While species diversity peaked at 8 yr post‐eruption, functional diversity was continuing to increase at 11 yr. Our results indicate that deep‐sea hydrothermal vents have distinct successional dynamics due to the high stress and high nutrient conditions in early succession. These findings highlight the importance of extending theory to new systems and considering function to allow comparison between ecosystems with different species and environmental conditions.

     
    more » « less